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We investigate experimentally the higher modes of the Dean vortex flow in the regime of resonant fun-
damental and second harmonic modes in the Taylor-Dean system. An unusual transition sequence to
spatiotemporal chaos is observed: stationary Dean vortex flow gives way to a drift instability followed
by a wavelength-halving instability. The resulting small rolls are modulated in space and time, and they
form a roll packet that preserves the initial spatial period. The linear and nonlinear stability analysis of
the flow shows that the interaction of resonant modes leads to some of the observed results. The
wavelength-halving instability may also be attributed to a second harmonic generation.

PACS number(s): 47.20.—k, 47.52.+j, 47.32.—y

I. INTRODUCTION

Recently, one-dimensional extended systems far from
equilibrium exhibiting bifurcations to tilted, drifting pat-
terns have attracted much attention. This type of bifur-
cation has been observed in the Taylor-Couette system
[1], in the Taylor-Dean system [2—4], in directional
solidification of liquid crystals [5], in lamellar eutectic
growth [6], and in directional viscous fingering [7]. These
observations have provided the sufficient basic ingredient
for several attempts at theoretical modeling [8—13]. This
special attention has been motivated by the leading role
played by the natural breaking of symmetries in these
systems, which manifests itself in the occurrence of a fre-
quency in the pattern, in roll pattern drifting, or in the
occurrence of localized traveling pulses or spatiotemporal
defects. Recent developments in the nonlinear
Ginzburg-Landau theory for dissipative systems have
provided insight into some of the experimental results
such as the existence of the localized pulselike structures
in the cellular pattern, and the dynamics of defects [9,14].
In these theoretical studies, particular attention was
drawn to the mechanism of the second harmonic interac-
tion with the fundamental mode. Although the impor-
tance of the interaction of the fundamental with the
second harmonic modes in nonlinear optics has been ap-
preciated for some years [15,16], it was not until recently
that the application to dissipative dynamical systems has
been attempted. Such a model was developed by
Malomed and Tribelsky [17] in the context of the
Kuramoto-Sivashinsky equation and has been applied by
Fauve, Douady, and Thual [11] to explain the drift insta-
bility observed in several of the experiments.

Fundamental and second harmonic interactions can
have additional consequences. For example, spatial
period doubling has been observed in directional
solidification when the interface is driven rapidly above
the drift threshold and then rapidly driven back to a cel-
lular regime [5]. When the Taylor-Couette system with
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slightly counterrotating cylinders is driven far away from
the linearly stable state, patterns exhibiting spatial period
doubling were found by Wiener and McAlister [18], in
agreement with numerical calculations [19]. These cases
of spatial second harmonic generation are a consequence
of a “forced” wavelength selection process. However,
there exist many hydrodynamic systems in which linear
stability analysis predicts the existence of resonant funda-
mental and second harmonic modes, but with either lim-
ited or no experimental evidence so far: the hydromag-
netic Taylor-Couette instability [20], the flow between
two horizontal concentric cylinders with a transverse
pressure gradient [21], double layer thermal convection
[22], and a slight variant, thermal convection in super-
posed layers of immiscible fluids [23,24]. The mathemati-
cal investigation of the interaction of resonant spatial
modes, and of modes with different spatial scales, has
been addressed in [22,25].

This paper reports recent experimental results from a
nearly one-dimensional pattern-forming system in which
the second spatial harmonic of a pattern arises naturally
(without a “forcing procedure”) when the system is
driven continuously from the base flow state to various
cellular patterns. The system consists of two horizontal
coaxial cylinders with a partially filled gap, usually re-
ferred to as the Taylor-Dean system [3,4]. Since the two
cylinders may rotate independently, the flow evolution is
described in a two parameter space (R,,R;) defined
below. In contrast with the Taylor-Couette system [26],
the partial filling of the gap produces two free surfaces,
which break the rotational symmetry of the Couette flow
and may lead to quite different flow states. The rotation
of the cylinders drives the fluid toward the free surfaces,
and to reverse it, a pressure gradient along the azimuthal
direction is created. Far away from the free surfaces, the
flow velocity profile is a combination of Couette flow due
to the cylinder rotation and Poiseuille flow due to the az-
imuthal pressure gradient. The streamline curvature in-
duces a radial stratification of the fluid particle momen-
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tum. Rayleigh’s stability criterion [3,26] predicts, in the
case of negative momentum stratification, that centrifu-
gal instabilities may arise, producing longitudinal rolls
periodically spaced in the spanwise (axial) direction. De-
tailed linear and nonlinear stability analysis of the flow
shows that, depending on the angular velocities of the
cylinders, the destabilization of the different potentially
unstable zones gives rise to several different modes. Both
stationary and traveling roll patterns may arise with
different wave numbers, the ratio between them varying
from 1 to 2.5 [2,27]. Thus, the Taylor-Dean system real-
izes a quasi-one-dimensional extended system with com-
peting instabilities of various wavelengths. The interac-
tion of these modes should lead to different patterns than
what has been observed in other experimental
configurations.

The aim of this work is to describe in detail the obser-
vations previously reported [30] and to put them in the
context of recent theoretical developments. The paper is
organized as follows: Sec. II describes the experimental
setup and procedure. In Sec. III, we present the experi-
mental results and Sec. IV contains results from the
linear stability analysis. The model of second harmonic
interaction in the generation of drift instabilities is
presented in Sec. V. The last section consists of conclud-
ing remarks.

II. EXPERIMENTAL SETUP

The experimental system essentially consists of two
horizontal coaxial cylinders [Fig. 1(a)] mounted in such a
way that each can rotate independently of the other.
The inner cylinder, made of black Delrin plastic with ra-
dius @ =4.49 cm, rotates at angular velocity Q;, and the
outer, with radius »=5.08 cm, is made of precision
ground and polished Duran glass and, in this experiment,
rotates in the same direction as the inner at angular ve-
locity Q,. The gap between the cylinders is
d=>b —a =0.59 cm, and the radius ratio n=a /b =0.88.
Teflon rings are attached to the inner surface of the outer
cylinder a distance L =53.40 cm apart, giving an aspect
ratio I'=L /d =90, large enough to realize a quasi-one-
dimensional extended system. The cylinders are driven
by Compumotor stepper motors which are precise to
0.25X 1073 Hz. The working fluid is water with 1%
Kalliroscope AQ1000 added for visualization. Its kine-
matic viscosity is v=0.98 X 102 cm?/sec at the tempera-
ture T=21°C, the average temperature in our controlled
laboratory environment.

We define the flow control parameters to be the Rey-
nolds numbers relative to the inner and outer cylinders,
respectively, R;=Q;ad /v, R,=Q,bd /v. In this experi-
ment, the outer cylinder was kept rotating at a fixed an-
gular velocity, and we varied slowly (quasistatically) the
inner cylinder angular velocity from the base flow state
through successive bifurcations. In order to achieve qua-
sistatic conditions and thus avoid spurious hysteresis
[31], we have chosen the ramping rate (experimental vari-
ation of the inner cylinder Reynolds number)
r=dR;/dt* <3 where t*=t/I". The Reynolds numbers
are measured to within +£2%.

Flow frequencies are measured from the power spectra
of single-point time series obtained with laser light that is
reflected off the Kalliroscope flakes onto a photodiode
detector. Spatial dependence data are obtained using a
28-35 mm variable focal length lens to form an image of
the visualized flow on a 1024-pixel charge-coupled device
linear array interfaced through a computer automated
measurement and control (CAMAC) system to a PDP-
11/73 computer. The line of 1024 pixels is oriented
parallel to the cylinder axis, and about 3 cm below a free
surface. (This is far enough from the surface to be
effectively in the bulk flow region.) The output consists
of intensity maxima and minima which correspond to the
centers and boundaries of the rolls. Space-time diagrams
are then produced by displaying intensity versus axial po-
sition plots at regular time intervals (A7z=0.07 or 0.14
sec). An analysis of these plots yields the roll size and the
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FIG. 1. (a) Schematic representation of the experimental
geometry of the Taylor-Dean system. (b) Base velocity profile
for £ =0.714 far from the free surfaces: potentially unstable and
stable zones after the Rayleigh stability criterion.
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dynamics of the pattern in time and in space. The spatial
periodicity of the flow pattern is characterized by the
nondimensional wave number g =2wd /A, and its time
dependence is characterized by the propagation velocity v
or the roll frequency f.

III. RESULTS

The main experimental results to be described in this
section are represented in the parameter space (R,,R;)
shown in Fig. 2(a), where R, € [205,250]. The critical
values of the control parameter R; for the first and
second transitions depend sensitively on the outer
cylinder Reynolds number R,. Figure 2(b) shows the
schematic transition diagram for the particular value of
R,=213.

A. Transition from stationary to traveling rolls

The first instability from the laminar base flow gives
rise to stationary axisymmetric Dean rolls aligned along
the circumferential direction [Fig. 3(a)]. Within our ex-
perimental error of 2% in R; and the step size of 0.2%,
this is found to be a supercritical bifurcation. This roll
pattern possesses also the reflection symmetry (z— —z),
where z is the axis of the system. The roll wave number
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FIG. 2. (a) Region of interest in the right part of the experi-
mental parameter space (R,,R;) in the neighborhood of the
codimension two point. The transitions to higher instabilities in
other parts of the diagram are different from those described
here. A complete parameter space of states is given in [29]. (b)
Schematic picture of the transitions for R, =213.
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is ¢ =3.40%0.05. The second instability occurs via a su-
percritical bifurcation (again there is no hysteresis within
our experimental limits) in which the rolls begin to travel
along the axial direction [Fig. 3(b)]. The propagation ve-
locity of the rolls at the onset is of order 102 cm/sec
=0.6v/d. This behavior is often called a drift instability
[11]. As the rolls begin to drift, they also begin to incline
in the propagation direction. Therefore the drift instabil-
ity is a result of the spontaneous breaking of the pattern
reflection symmetry. Figure 4 shows the drift frequency
measured from the power spectrum of the intensity of
light reflected off the roll pattern. The traveling rolls
have a wavelength slightly larger than that of the station-
ary rolls.

Just above onset of the drift instability, for all values of
R, for which drifting is observed, the traveling roll pat-
tern is subject to a phase instability that results in roll
collisions and roll generation. The roll generation adds a
roll to the pattern (roll creation) and the collision of two
rolls removes a roll from the pattern (roll annihilation).
For each experimental run, these roll creation and an-
nihilation events occur at different axial positions and
have a time period approximately equal to the roll drift
period [a typical example is shown in Fig. 5(a) for R,
different from that of Fig. 3; qualitatively the behavior is
similar for different R,, although the details may
change]. Each roll creation or annihilation process has a
finite lifetime corresponding to the accumulation or
release of “energy” by the pattern. The points in the
space-time diagram where collision and generation take
place are called spatiotemporal defects or grain boun-
daries [9,32]. We have observed that the total number of
these defects, which depend on the control parameter R;
and on the experimental ramping rate, is an odd number:
1,3,5..., possibly a reflection of the presence of end boun-
daries.

A further increase of R; leads to either the extinction
of the pattern for 205 <R, <213 (Fig. 2) or to pattern
weakening detected visually by a loss of contrast and
quantitatively by the measured decrease of the drift fre-
quency f, for R,>213 [Fig. 5(b)]. This is qualitatively
consistent with the prediction of the drift instability mod-
el, to be presented in Sec. V, that the drift frequency is
proportional to the roll amplitude near the onset of the
drift instability. Quantitative comparison was not possi-
ble since the relationship between the observed contrast
variations and the actual amplitude of the mode is not
known.

B. Wavelength-halving instability

Near R, =213, there is neither roll weakening nor roll
extinction, but the transition occurs for R; =315 to a pat-
tern with large rolls and small rolls occupying different
regions along the system axis. A large roll propagates
and splits, at an axial position which depends on R;, into
two rolls of different sizes [Fig. 3(c)] which propagate in
the same direction and with approximately the same drift
velocity as the parent roll. Such states are observed for
R,=213 in a finite range of the control parameter values
R; € [315,330]. The codimension two points in the pa-
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rameter space (R, R;) are where the large and small rolls
coexist. The range of the values of R; in which this coex-
istence is observed decreases as R, increases. Therefore
there exists a whole region of codimension two points in
the parameter space (R,,R;) [Fig. 2(a)]. The generally
observed case is that where large rolls occupy a part (e.g.,
the left part) of the flow pattern and the small rolls occu-
py the remainder (right); however, states with small rolls
sandwiched between two regions of large rolls have also
been observed. The occurrence of small rolls reduces the
domain of large rolls until their disappearance from the
pattern when the control parameter is slightly increased.
The points in the space-time diagram where large rolls
split into small rolls form a line which could be called a
spatiotemporal wall. The average wall position in the
space-time diagram depends on the control parameter
value R;, and, for a fixed value, the spatiotemporal wall
position fluctuates in space and time [Fig. 3(c)] in a zone
of approximately a large roll size in width.

For R, =213, for a small increase of R;, the weak rolls
give rise to small rolls which in turn tend to displace the
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large weak rolls. The small rolls are periodically modu-
lated in space and time (their intensity increases and then
decreases as they propagate) and they behave like a two-
roll packet (drifting at the same velocity) in which the
rolls exchange “‘energy” [Fig. 3(d)]. We should mention
also that in the small rolls region, we have observed, lo-
calized in space and time, remanent rolls from the large
roll pattern. For R, <213, a further increase of R; leads
to the occurrence, in the patternless flow, of traveling
rolls, the size of which is about half that of the former,
extinct rolls.

Figure 6 shows a Fourier spectrum of the spatial distri-
bution of light intensity reflected from the roll pattern
when the second harmonic peak becomes comparable in
power with the fundamental. In all cases, the Fourier
spectra show that the frequencies and the mean wave
numbers of the small roll and large, superseded, roll pat-
tern states are in a ratio close to 2:1; the differences
Af=f,—2f,~0.01 and Ag=g,—2q,~0.20 are due to
spatiotemporal modulations of the small rolls and other
temporal and spatial phase gradient related instabilities.
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FIG. 3. Space-time diagrams of different states of the roll pattern for R,=213: (a) stationary Dean rolls (R; =214),.(b).drifting
rolls (R;=299), (c) roll pattern with two coexisting wavelength states separated by a wall (R;=318) (each large roll splits into two
rolls of different sizes which propagate in the same direction forming a two-roll packet), (d) pure state of small modulated rolls

(R,=331).
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FIG. 4. Dimensionless drift frequency (proportional to the
roll drift velocity) as a function of the control parameter R; for
fixed R, =242. Stationary rolls are observed for R; € [202,238],
the drift instability occurs at R; =239, and the second harmonic
peak also becomes prominent at R; ~330. The small rolls occur
approximately at R; =340. The small rolls drift at approximate-
ly the same velocity as the large rolls. For this value of R,, the
coexistence between large and small rolls has not been observed.
For R; > 370, the peaks of the fundamental and second harmon-
ic broaden, so we consider the pattern to be chaotic. (+) corre-
spond to the fundamental mode peak and (X) to the second
harmonic mode peak.
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Since the second frequency f}, is almost twice the former
drift frequency (f, =~2f;) and the small rolls are about
half the size of the former rolls as seen from the space-
time plot (Figs. 3 and 5), this transition may be called a
wavelength-halving instability

A further increase of the control parameter leads to a
roll pattern with only small modulated rolls exhibiting an
apparently chaotic behavior [Fig. 5(c)] in which standing
waves can also be detected.

IV. LINEAR STABILITY THEORY

We have performed the linear stability analysis of the
Taylor-Dean system [27,29] and now summarize the re-
sults that pertain to the present experiment. In the small
gap approximation (d /a <<1), the base flow in the core
region of the Taylor-Dean system (i.e., far away from the
free surfaces) is given by

Vix)=3(1+pu)x?—22+u)x+1, (1)

where x =(r —a)/d is the nondimensional radial coordi-
nate and u=9Q,/Q; is the rotation velocity ratio of the
cylinders. Such a parabolic velocity profile allows for a
simple physical interpretation of the instability mecha-
nisms. In fact, on the basis of Rayleigh’s stability cri-
terion, such a profile has, for u >0, two potentially unsta-
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ble layers alternating with stable layers [Fig. 1(b)]. The
inner unstable layer is in the Couette part of the profile
and it must therefore give rise to the Taylor-Couette in-
stability, while the outer unstable layer is in the Poiseuille
part of the velocity profile and must likewise give rise to
the Dean instability. The perturbation v’ to the
basic flow (1) is expanded into normal modes
v'=(u,v,w)exp(st +iqgz +ipy) where g and p are the real
axial and azimuthal wave numbers and s is the complex
amplification rate of the perturbations. The linear stabili-
ty analysis of this parabolic velocity profile has shown
that for u>0.584, the critical modes are stationary and
axisymmetric [27], i.e., s =p =0. Elimination of the pres-
sure field p and of the axial velocity component w from
the linearized Navier-Stokes equations gives the follow-
ing system of equations for the stationary perturbative
velocity field:

(D?—¢2)u —2¢°TaV(x)v=0, 2)

(D?*—¢%—TaDVu=0, 3)
together with the homogeneous boundary conditions

u=Du=v=0 at x=0, x=1, 4)

where the parameter Ta=(Q;ad /v)(d /a)'/? is the Tay-
lor number [28]. These equations have been solved nu-
merically and the topology of the marginal stability
curves has been discussed thoroughly in [27] for corotat-
ing cylinders u > 0. The finite gap case has been investi-
gated recently in [33] for u€ [—5,5], and for the range
of 1 under consideration there is no significant difference
in the critical states of the first instability. We consider
©€E[0.6,0.8] which is the range of values of (R,,R;) con-
sidered in this experiment [34]. In that range, the eigen-
value problem defined by Egs. (2) and (3) and the homo-
geneous boundary conditions (4) has two stationary mar-
ginal curves [Fig. 7(a)] Ta=Tal(q): for the particular
value of p=0.714, the lower stability curve has a
minimum at ¢, =4.34, Ta;=113.59, and corresponds to
the Dean instability as its eigenfunction is centered in the
Poiseuille unstable zone of the base flow. The upper sta-

TABLE I. Critical parameters of the Dean (g,,Ta,) and Tay-
lor (g,,Ta,) modes, together with the ratios n=gq,/q, and
r=Ta,/Ta,.

K g1 Ta, q2 Ta, n r
0.650 4.48 121.26 8.44 221.59 1.88 1.83
0.700 4.37 115.18 8.63 229.12 1.97 1.99
0.705 4.36 114.61 8.64 229.86 1.98 2.01
0.710 4.35 114.04 8.66 230.61 1.99 2.02
0.714 4.34 113.59 8.68 231.21 2.00 2.04
0.720 4.33 112.91 8.70 232.10 2.01 2.06
0.730 4.30 111.81 8.74 233.60 2.03 2.09
0.750 4.26 109.66 8.82 236.60 2.07 2.16
0.800 4.17 104.60 9.01 244.11 2.16 2.33
0.850 4.08 99.94 9.20 251.64 2.25 2.53
0.885 4.02 96.89 9.33 256.94 2.32 2.65
0.900 4.00 95.64 9.34 259.23 2.34 2.71
0.950 3.92 91.65 9.57 266.86 2.44 2.91
1.000 3.85 87.93 9.76 274.56 2.53 3.12
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FIG. 5. Space-time diagram of time-dependent states for R, =242: (a) traveling roll pattern with spatiotemporal defects for
R,=242, R;=282. In this pattern, representing 60% of the whole flow pattern, there are three positions where spatiotemporal de-
fects occur, z;,=6.4 cm=10.8d, z,=12.2 cm=20.5d, z;=25.8 cm=43.5d, where the left end of the pattern is located at 9.7
cm=16.3d, away from the origin of this plot. The period between defects at the same position is 28 sec=0.784*/v for R, =242,
R;=282. The whole pattern contains five defects (three sourcelike and two sinklike). In the sourcelike defect, a roll splits into two
rolls; in the sinklike defect, two rolls collide to form one roll. (b) Weakening of the roll pattern (R; =332); the roll amplitude changes
significantly over time while the external conditions are maintained constant. (c) Chaotic state as a mixture of standing and traveling

rolls (R; =393).

bility curve has a minimum at ¢g,=8.68, Ta,=231.21,
and is associated with the Taylor instability as its eigen-
function is centered in the Couette unstable zone of the
base flow [Fig. 1(b)] [27]. The second mode (Taylor
mode) has a critical wave number g, of the order of twice
that of the fundamental Dean mode g, over the range of
u considered (see Table I). For 4 =0.714, the Dean mode
and the Taylor mode become perfectly resonant
(g,=2q,) and therefore may interact strongly. But mode
interaction is a nonlinear phenomenon and therefore it
cannot be described by the linear stability analysis. The
nonlinear interaction of these Dean and Taylor modes is
the subject of the next section.

To complete the linear analysis, it is necessary to study
the stability of long-wavelength perturbations, i.e., to
determine the Eckhaus stability boundary. The Eckhaus
stability curve of the one-dimensional long-wavelength

stationary perturbations is given by the equation
Ta(q)=Ta,[1+3£3(g —¢.)°] ,

where £, is the perturbation correlation length and de-
pends on the rotation ratio p [33]. The experimental
wave numbers of the large rolls (Dean rolls and drifting
rolls) lie in the Eckhaus stable zone while those of the
small rolls fall in the Eckhaus unstable zone [Fig. 7(b)].
Thus the small rolls probably correspond to the stable
second harmonic mode (Taylor modes) which supercedes
the fundamental mode in the Dean mode’s Eckhaus un-
stable zone.

V. DRIFT INSTABILITY MODEL

The linear stability analysis shows that the Taylor-
Dean system exhibits two modes which are spatially reso-
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FIG. 6. Fourier spectra of light intensity distribution along
the roll pattern for R, =213, R;=299. The large roll pattern is
drifting. The first peak corresponds to the wave number
q=3.22, while the second harmonic peak (¢ =6.631) is also
prominent.

nant for £x=0.714: the Dean mode with critical wave
number g, plays the role of the fundamental mode and
the Taylor mode with critical wave number g,=2q, is
the second harmonic mode. Following the general non-
linear analysis of resonant stationary modes [11,22], we
show that the interaction of the Dean and Taylor modes
may lead to observed features related to the second har-
monic interaction. The basic analysis is strictly true for
the value u=0.714, but it can be extended to other values
of u corresponding to the experimental data
nE€[0.65,0.80] by taking into account the phase
mismatching due to the wave number difference
Ag=q,—2q;.

A. Coupled amplitude equations

The perturbation flow velocity field may be written as
follows:

v(t,r)=A(t,z )Fleiq‘z—i-B(t,z)eriqzz-i-c.c. +h.o.t. ,
(5)

where c.c. stands for complex conjugate and h.o.t. stands
for higher order terms, A(t,z) and B(t,z) are slowly vary-
ing complex amplitudes corresponding to the Dean and
the Taylor modes, respectively, and F,(x) and F,(x) are
their eigenvectors. The amplitude equations for 4 and B
satisfying translational invariance are

34 324

y —faAtE Py —8BA*e't% (6)
Z
2 .
S =rB+G T s Az i, )
4
where
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fo=€,—aa’*—y,b* a=|4|,
fy=€—Bb>—v,a%, b=|B|,

and €, ,=(Ta—Ta,,)/Ta;, are the relative distances
from the onset for the Dean and Taylor modes, respec-
tively (€,<0 in the investigated region, while €;>0).
After linear stability calculations, the coherence lengths
&,,&, for the fundamental mode and the second harmon-
ic mode are approximately equal, i.e., £, ~£,. The quan-
tities a, B, y,, and y, are the coupling coefficients be-
tween the amplitude of the Dean mode and that of the
Taylor mode. The sign of the hybridization terms (~8)
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FIG. 7. Linear stability analysis results: (a) marginal stabili-
ty curves for the Dean and Taylor modes for u=0.714, (b) the
marginal stability curve (MS) for the Dean mode and associated
Eckhaus stability curve (ES) with £5=0.259 for ©=0.885. The
scatter points represent experimental data for R,=242: . for
the large rolls and X for the small rolls.
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between the fundamental Dean mode and the Taylor
mode is chosen in such a way that the fundamental mode
tends to generate the second harmonic while the latter
tends to damp the fundamental mode in the interaction
process. In particular, Eq. (7) shows that the fundamen-
tal mode energy is a source of the Taylor mode which
may be generated from a zero amplitude. The reduction
procedure shows that the dynamics of these amplitudes is
mainly governed by the dephasing between the Dean and
the Taylor modes. In fact, separating the complex ampli-
tudes into moduli and phases

A=ae'®, B=be'V,

substituting them into the amplitude equations, and
neglecting the logarithmically varying in space terms, one
finds the following expressions for the amplitude moduli
and phases:

=f,a +§2 a 2 %ﬁ —&ab cosO , (8)
2
2

——f,,b+§2 a A %! +8a%0s0,  (9)

o _,00 |, a].
p §a—a > —8|2b b sin@+vAgq , (10)
L —g Z‘f —8b sin® (1)

2 2

—“’—52 O 59 simo , (12)

b

where 6=W—2<I>+qu is the dephasing between the
Dean and the Taylor modes and v =dz /dt is the phase
velocity. Equations (8)—(10) are very similar to those
describing the second harmonic generation in a lossy
nonlinear medium [15,16] in which the power can be con-
verted from the fundamental mode into the second har-
monic. The evolution equations (11) and (12) of the
phases @ and ¥ give the drift frequencies of the Dean
and Taylor modes. Therefore the dynamics is governed
by the dephasage ©, which plays the role of the order pa-
rameter for the system [11]. Equations (8)—(12) contain
the particular case of a spatially homogeneous pattern,
which has been investigated recently [11]. The new term
vAg, which is due to the phase mismatching between
modes, is the source term responsible for the imperfec-
tion. We consider in the following only spatially homo-
geneous patterns (8/9z =0).

B. Perfect phase matching between modes

When there is a perfect phase matching between the
Dean and the Taylor modes Ag =0, which is the case for
©#=0.714, and we retrieve the systems of equations inves-
tigated by other authors [11,22]. In fact, Eq. (10) can be
rearranged using Eqgs. (8) and (9) as follows [15]:

dae
dt

where

== =H[a?%b?%0O]sin0O , (13)
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H[a*b ,e]COSG—Eln(G b)+Q2a+y,)a
+(B+2y,)b%—(2¢,+¢,) . (14)
First, we remark that the stationary solutions

a =const.#0, b =0, and ©=0 or 7 describe the station-
ary axisymmetric Dean roll pattern (pure mode or mixed
state) preserving reflection symmetry (sin©=0). In the
case of a mixed state, close to the onset of the first insta-
bility, the Taylor mode will follow adiabatically the Dean
mode [11]. The spontaneous breaking of the reflection
symmetry occurs when the function H[a?2,b2,6*]=0.
The solution

a=ay70, b=by7#0, ©6=06*,

is given by
(26, +€,)8
2b§=aj, bj=———,
0—4ap bp D (15)
€2y, +B)—€(2a+7y,)
cose*=§1b— Al BD 2 r > (16)

with the denominator D =4a+2(y, +y,)+B. The solu-
tion (15) and (16) together with Eq. (11) describes a drift-
ing cellular pattern with the drift velocity

1do _ V2

——=—35 e*,
vy = g dt p a sin

where g is the roll wave number. The drift velocity v, is
proportional to the amplitude a of the fundamental
mode. Proctor and Jones [22] have shown that the trav-
eling waves resulting from the drift instability are
theoretically stable and therefore should be observable
experimentally.

In fact, the observed drifting instability in our experi-
ments is associated with a spontaneous breaking of the
reflection symmetry of the stationary roll pattern, giving
rise to traveling rolls inclined towards the propagation
direction. At the onset of the drifting instability, the
drift velocity is zero. Just above the onset of the drift
transition, the rolls have a small velocity which increases
with the inner cylinder Reynolds number R; as
(R;—R;,)"? [Fig. 8(a)] which confirms that the drift in-
stability is a supercritical transition (also no difference in
onset of the drift instability was observed when ramping
up and down, within the experimental limits mentioned
in Sec. IIT A). We have observed a nonhysteretic jump at
the transition.

This model also gives an estimate of the onset of the
drift instability. In fact, the solutions (15) and (16) are
physically acceptable if

0= [a+y,)e,—(B+2y, )€, 1> <82D(2¢,+¢,) . (17

In the parameter space of the two competing modes
(€y,€,), the equality condition gives a parabolic frontier
of the drifting instability on which the phase velocity
vanishes [22]. But, since in our experiments, €, >0 and
€,<0, the weak condition 2¢€,;+¢€,=0 yields the approxi-
mate value of the onset Ta* of the drift instability, i.e.,
the value for which the second harmonic amplitude be-
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comes positive definite:
. 3TaTa,

Ta*=—"—2
2 " Ta,+2Ta,

The criticality distance

6*

_ Ta*—Ta; ,—1

= 18
Ta, 2r+1"’ (18)

and from the critical values in Table I, one finds that the
onset of the drift instability in this model is at €* =0.204,
which is lower than (but comparable with) the experimen-
tal onset value €g,,,=0.280. These values are reasonably
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FIG. 8. Order parameter (measured drift velocity v, in units
of v/d) as a function of the control parameter R;: (a) for perfect
phase matching (£x=0.73), (b) for imperfect phase matching
(u=0.81). There is a velocity jump at the onset of the drift in-
stability in the case of the perfect phase matching while, for the
imperfect phase matching, the drift velocity grows continuously
from zero to a finite value.
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small to make the amplitude equation model quite ac-
ceptable. The effective linear growth rate of the funda-
mental model o .s=€,—v,b*—8b cos©O* decreases as the
second harmonic amplitude grows, and the growth of the
second harmonic mode stabilizes the fundamental mode.

C. Imperfect phase matching

In the range of the experimental data described above,
the linear stability analysis has shown that for u0.714
the competing modes have not exactly resonant wave
numbers, but there is a phase mismatching between them.
The interaction between the fundamental and second har-
monic will be effective only if the phase matching condi-
tion is nearly satisfied, i.e., Aq/q <<1, which is satisfied
in our experiments where Aq/g~0.05. The imperfect
phase matching modifies the onset neighborhood of the
drift instability by introducing an imperfect bifurcation
[35] on the order parameter ©. Such an imperfect bifur-
cation has been observed in the drift velocity measure-
ments close to the onset of the drift instability [Fig. 8(b)].
For a steady solution a=const.#0, b =const.70,
©=0*, the phase mismatch is related to the solution pa-
rameters by vAg =58(2b —a?/b )sin©*.

D. Halving instability

In the case of perfect phase matching, the drift fre-

quency associated with the second harmonic mode

0y = dd—\:’ =2w,

can be compared with the drift frequency of the small roll
pattern. The dependence of f(R;) in Fig. 4 shows also
the emergence of the second harmonic frequency f
when its peak becomes larger than that of the drifting
rolls. The origin of the frequency difference §f=f,
—2f,;70 is in the imperfect phase matching but also in
the phase modulations of the small drifting rolls. The ex-
istence of the interface between flow patterns of different
wavelengths indicates that the transition is subcritical.
The interface moves so as to eliminate the large roll state
as the control parameter increases. The resulting small
rolls preserve the initial wavelength, which appears as a
subharmonic peak in the spatial Fourier spectrum.
Moreover, the flow pattern is subject to new phase insta-
bilities, and probably higher harmonics cannot be
anymore slaved to the first two modes since they can also
be excited. In fact, at their onset, the small traveling rolls
are modulated in space and in time.

There exist in the literature tentative investigations
[11,22] of the stability of traveling rolls resulting from the
drift instability, from which standing modes are stable.
In our case, the traveling rolls persist even though they
are modulated with a wavelength comparable to that of
the initial instability. Such modulations likely are com-
plicated combinations of drifting and standing waves re-
sulting from the phase instability.

The above model explains the appearance of the drift-
ing cellular pattern, but it does not provide an explana-
tion for the appearance of a second stable harmonic (spa-
tial period halving). The question which arises from the
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experimental data is the following: are the small rolls as-
sociated with the stability of the second harmonic with
amplitude b when the fundamental mode has been
damped away in the interaction process or do they corre-
spond to a different type of bifurcation? None of the sta-
bility analyses of the drifting modes done so far provide a
framework for the spatial period halving, and apparently,
the small rolls occur in the range of values of the control
parameters where the amplitude equations are no longer
valid.

VI. CONCLUSION

The roll pattern observed in the Taylor-Dean system in
the range of R, € [205,250] exhibits an unusual sequence
of transitions: the drift instability, the pattern extinction
or weakening, the halving instability with coexisting rolls
of different wavelengths, the onset of the small modulated
roll packets, and, finally, chaotic states with a mixture of
traveling and standing rolls. We have shown that, from
the linear stability analysis, perfectly resonant or almost
resonant modes exist in the Taylor-Dean system for u &
[0.65,0.80]. The reduction of the evolution equations of
the competing modes leads to a system of equations
which among others has a nontrivial solution of a drifting
roll pattern. The drift instability is now understood as a
result of the interaction between competing perfectly or
almost resonant modes. We have used this mechanism
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inherent in our system to interpret experimental observa-
tions in which the order parameter is the drift velocity,
which has been measured.

The simultaneous presence of large and small traveling
rolls in the Taylor-Dean system is an important realiza-
tion of coexisting stable time-dependent states with
different spatial scales in a nonequilibrium hydrodynam-
ics system. All observed transitions and the properties of
corresponding states suggest that they originate in the in-
teraction mechanism between the fundamental and
second harmonic mode. A fully comprehensive descrip-
tion of the remainder of the experimental observations
(halving instability, wall dynamics, stability of small
modulated rolls) awaits a more comprehensive theoretical
model.
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